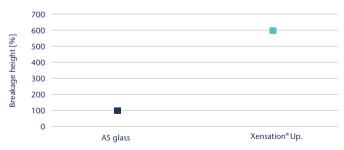

## SCHOTT Xensation<sup>®</sup> Up.

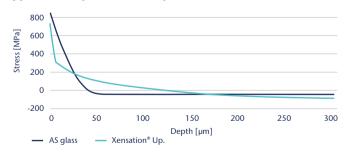
The chemically strengthened lithium-aluminum-silicate (LAS) cover glass Xensation<sup>®</sup> Up. redefines the standards for reliability and durability of modern mobile devices. With its exceptional drop resistance and excellent processing properties, Xensation<sup>®</sup> Up. opens up new possibilities for a wide range of applications.




## Features

The outstanding features of Xensation<sup>®</sup> Up. are based on an extremely efficient ion exchange during the chemical strengthening process. The salt bath-assisted process ensures reliable and fast processing of raw glass with unique mechanical durability and stability.

## **Key Benefits**


- Maximum survival chances after drops, evidenced by extraor dinary drop test performance
- Top-notch strength and shaping versatility thanks to the highly effective ion exchange
- Versatile use for high-performance covers and proven millions of times as front and back covers, camera, and smartwatch covers

### Results of set-drop test with #180 grit sandpaper



Mean values of dummy test series with 0.8 mm thickness, compared to standard AS glass; results may vary depending on test set-up

### Typical stress profiles in comparison



Xensation<sup>®</sup> Up. enables a deeper ion exchange compared to standard AS glass in order to ensure excellent strength performance

SCHOTT glass made of ideas

# **SCHOTT Xensation® Up.**

| Mechanical properties |                        |
|-----------------------|------------------------|
| Density $\rho$        | 2.48 g/cm <sup>3</sup> |
| Young's modulus E     | 82 kN/mm <sup>2</sup>  |
| Poisson's ratio $v$   | 0.22                   |
| Shear modulus G       | 34 kN/mm <sup>2</sup>  |
| Vickers hardness HV   |                        |
| unstrengthened        | 630                    |
| strengthened*         | 680                    |

| Thermal properties                                                           |                                        |
|------------------------------------------------------------------------------|----------------------------------------|
| Coefficient of linear thermal expansion $\alpha_{_{(20-300^\circ\text{C})}}$ | 8.3 · 10 <sup>-6</sup> K <sup>-1</sup> |
| Transformation temperature $T_g$                                             | 525 °C                                 |
| Viscosity                                                                    |                                        |
| Annealing point at 10 <sup>13</sup> dPas                                     | 540 °C                                 |
| Softening point 10 <sup>7.6</sup> dPas                                       | 760 °C                                 |
| Working point 10 <sup>₄</sup> dPas                                           | 1120 °C                                |

| Optical properties                          |        |              |              |        |              |
|---------------------------------------------|--------|--------------|--------------|--------|--------------|
| Wavelength $\lambda$ [nm]                   | 365    | 405          | 518          | 595    | 640          |
| Measurement method                          | FSM-UV | SLP-<br>2000 | SLP-<br>2000 | FSM-LE | SLP-<br>1000 |
| Refractive index n of core glass            | 1.546  | 1.537        | 1.525        | 1.521  | 1.520        |
| Refractive index n<br>of K-exchanged layer* | 1.554  | 1.542        | 1.528        | 1.523  | 1.522        |
| Photoelastic constant C<br>[nm/(cm*MPa)]    | 30.2   | 29.0         | 28.2         | 27.8   | 27.6         |
| Transmittance T [%]<br>(t = 0.78 mm)        | 89     | 90           | 90           | 91     | 92           |

| Electrical properties (extrapolated) |                       |                           |
|--------------------------------------|-----------------------|---------------------------|
| Frequency $f_0$ [MHz]                | Dielectric constant ɛ | Loss tangent tan $\delta$ |
| 54                                   | 7.3                   | 0.007                     |
| 480                                  | 7.1                   | 0.008                     |
| 825                                  | 7.1                   | 0.009                     |
| 912                                  | 7.1                   | 0.009                     |
| 1977                                 | 7.0                   | 0.010                     |
| 2170                                 | 7.0                   | 0.010                     |
| 2986                                 | 7.0                   | 0.011                     |

All values are typical measured values and refer to unstrengthened glass. \* Values that can be achieved after chemical strengthening process

\*\* Further thicknesses and sheet sizes are available on request

## **Chemical properties**

Chemical strengthening\* Compressive stress CS

| Hydrolytic resistance acc. to DIN ISO 719                                 |       |
|---------------------------------------------------------------------------|-------|
| Hydrolytic class                                                          | HGB 2 |
| Equivalent of alkali Na <sub>2</sub> O<br>per gram of glass grains [µg/g] | 38    |
| Acid resistance acc. to DIN 12 116                                        |       |
| Acid class                                                                | S4    |
| Half surface weight loss after 6 hours [mg/dm <sup>2</sup> ]              | 19    |
| Alkali resistance acc. to ISO 695                                         |       |
| Alkali class                                                              | A1    |
| Surface weight loss after 3 hours [mg/dm <sup>2</sup> ]                   | 42    |

| XIM |                   |
|-----|-------------------|
|     |                   |
|     | capable > 900 MPa |
|     | capable > 150 um  |

| Depth of compressive layer DoCL | capable >150 µm   |
|---------------------------------|-------------------|
| 4-Point bending strength        | capable > 700 MPa |
| Forms supplied**                |                   |

| Forms supplied** |                  |
|------------------|------------------|
| Thickness range  | 0.55 – 0.80 mm   |
| Sheet size       | 1150 mm x 950 mm |

carbon neutral natureoffice.com | DE-077-022010 print production



#### schott.com/xensation

SCHOTT Technical Glass Solutions GmbH, Otto-Schott-Strasse 13, 07745 Jena, Germany info.xensation@schott.com