SCHOTT AS 87 eco SCHOTT AS 87 eco is an aluminosilicate glass suited for chemical strengthening (via an ion exchange treatment) that offers a high level of mechanical impact resistance and bending strength, as well as high resistance to scratches. ## **Applications** - Protective cover glass - CIS (Camera imaging) - FPS (Fingerprint sensor) - Touch panel glass - · Automotive interior | Technical Properties | | |----------------------------------|-------------------------------------| | Formats in mm x mm ¹⁾ | 500 x 400
440 x 360 | | Thickness in µm | 70, 100, 145, 175,
210, 250, 330 | | Thickness tolerance in µm | ±20 | | TTV ²⁾ in µm | ≤20 | | Warp ²⁾ in µm | ≤100 - ≤1000 | | Roughness in nm | < 0.5 | | Thermal Properties | | |--|------| | CTE (Coefficient of thermal expansion) α in 10 ⁻⁶ ·K ⁻¹ (20 °C; 300 °C) | 8.7 | | Mean specific heat capacity cp in J/(g·K) (20°C to 100°C) | 0.84 | | Transformation temperature <i>Tg</i> in °C | 621 | | Viscosity $\lg \eta$ in $dPa \cdot s$ | Temperature in °C | |---------------------------------------|-------------------| | Strain point 14.5 | 594 | | Annealing point 13.0 | 633 | | Softening point 7.6 | 872 | | Electrical Properties | | | |--|----------|-------------| | Dielectric constant ε_r (at $\vartheta = 25$ °C) | at 1 MHz | 7.7 | | | at 1 GHz | 7.3 | | | at 5 GHz | 7.2 | | Dissipation factor $\tan \delta$ (at $\vartheta = 25 ^{\circ}\text{C}$) | at 1 MHz | 138 · 10-4 | | | at 1 GHz | 133 · 10-4 | | | at 5 GHz | 172 · 10-4 | | Conductivity (at $\vartheta = 25$ °C, direct current) | in S/cm | 5.6 · 10-12 | | 1) other | formats | unon | request | |----------|---------|------|---------| ²⁾depending on thicknesses | Chemical Strengthening ³⁾ | | |--|-------| | Capability of Compressive Stresses (CS) in MPa | > 850 | | Capability of Depth of Layer (DoL) in µm | > 50 | | Chemical Properties | | |-----------------------------|-------| | Hydrolytic resistance class | HGB 2 | | Acid resistance class | S 4 | | Alkali resistance class | A 1 | | Mechanical Properties | | |---|------------| | Density ρ in g/cm ³ (annealed at 40 °C/h) | 2.46 | | Young's modulus E in kN/mm ² | 73.3 | | Torsion G modulus in kN/mm ² | 30.1 | | Poisson's ratio μ | 0.216 | | Knoop hardness HK 0.1/20 | 500 (5604) | | Vickers hardness HV 0.2/25 | 550 (6304) | | Photoelastic constant C in (nm/cm)/MPa | 29.0 | | Optical Properties | | |--|-----------------| | Refractive index (as drawn) n_D | 1.5040 ± 0.0015 | | Abbe value v_e | 59.5 | | | | | Transmittance values $ au(\lambda)$ in %, thickn | ness 0.175 mm | | 254 nm | 46.3 | | 380 nm | 91.5 | | 632.8 nm | 92.1 | | 1064 nm | 92.2 | ## Spectral Transmittance (λ = 200 nm – 3200 nm) ³⁾ strengthening parameters depend on applications and glass thicknesses; for more professional advices, please consult SCHOTT ⁴⁾hardness measured at chemical strengthened condition